Physics 226: Problem Set #7 Due in Class on Thursday Oct 27, 2016

1. Draw a Feynman diagram involving a W boson for each of the following processes:

(a)
$$\tau^+ \to e^+ + \nu_e + \overline{\nu}_{\tau}$$

(b)
$$K^0 \to \pi^- + e^+ + \nu_e$$

(c)
$$D^+ \to \overline{K^0} + \mu^+ + \nu_\mu$$

(d)
$$\tau^+ \to \overline{\nu}_{\tau} + \pi^+$$

(e)
$$\Lambda \to p + e^- + \overline{\nu}_e$$

(f)
$$\nu_e + e^- \to \nu_e + e^-$$

2. For each of the weak interations listed below replace the unknown X with the appropriate particle:

(a)
$$\pi^+ \to \pi^0 + e^+ + X$$

(b)
$$X \to e^+ \nu_e \overline{\nu}_\mu$$

(c)
$$K^+ \to X e^+ \nu_e$$

(d)
$$X + p \rightarrow n + e^+$$

(e)
$$D^0 \to K^- + \pi^0 + \nu_e + X$$

- 3. Estimate the relative rates for the following four decay modes of the $D^0(c\overline{u})$ meson: $D^0 \to K^-\pi^+$, $D^0 \to \pi^-\pi^+$, $D^0 \to K^+\pi^-$, $D^0 \to \pi^0\pi^0$. Express these as the branching ratio of each decay mode divided by the branching ratio for $D^0 \to K^-\pi^+$. As part of your answer, draw Feynman diagrams involving W bosons for each decay. How well do your estimates agree with the experimental ratios?
- 4. Consider the rare leptonic decay $B^+ \to \ell^+ \nu_{\ell}$.
 - (a) Explain in words, with an accompanying diagram, why this decay is rare.

(b) We saw in class that the charged pion has a partial width for its decay to a muon

$$\Gamma(\pi^+ \to \mu^+ \nu) = \frac{G^2}{8\pi} f_\pi^2 m_\pi m_\mu^2 \left(1 - \frac{m_\mu^2}{m_\pi^2} \right)$$

where f_{π} is a constant that is related to the π wave function at the origin, has units of mass and has a value approximately equal to m_{π} . Using the analog of this expression, calculate the relative rates for the B^+ to decay to the 3 lepton species e, μ and τ .

- (c) From the particle data group web page, state whether this decay has been observed for the cases of $\ell=e, \mu$ and τ and if the decay has been observed, give the observed branching ratio and its uncertainy.
- (d) Use the results above to estimate f_{B^+} . Warning: make sure you include the effect of the CKM matrix in the estimate.
- (e) Repeat (a), (b) and (c) for the D_s .